- 1 The alkenes are a homologous series of unsaturated hydrocarbons.
 - (a) The table below gives the names, formulae and boiling points of the first members of the series.

name	for	boiling point/°C		
ethene	₂ H ₄	-1		
propene	₃ H ₆	-		
butene	₄H ₈	-		
pentene	₅ H ₁₀	30		
hexene				

(i)	Complete	the	table	by	giving	the	formula	of	hexene	and	by	predicting	its	boiling
	point.													
														[2]

(ii) Deduce the formula of the alkene which has a relative molecular mass of 168. Show your working.

	[2]

(b) Describe a test that will distinguish between the two isomers, but-2-ene and cyclobutane.

test	
result with but-2-ene	
result with cyclobutane	[3]

?
[1]
hloride
[1]
[2]

(c) Alkenes undergo addition reactions.

AIN	enes	tre unsaturated hydrocarbons. They undergo addition reactions.
(a)		of the methods of making alkenes are cracking and the thermal decomposition of oalkanes.
	(i)	Complete an equation for the cracking of the alkane, decane.
		$C_{10}H_{22} \rightarrow \dots + \dots$ decane
	(ii)	Propene can be made by the thermal decomposition of chloropropane. Describe how chloropropane can be made from propane.
		reagents propane and
		conditions[4]
(b)	The	following alkenes are isomers.
		$\begin{array}{ccc} \operatorname{CH_3-CH_2-CH=CH_2} & \operatorname{CH_3-C=CH_2} \\ & \operatorname{CH_3} \end{array}$
	(i)	Explain why they are isomers.
	(ii)	Give the name and structural formula of another hydrocarbon that is isomeric with the above.
		name
		structural formula

2

(c) Give the name of the product when but-1-ene reacts with each of the following.

steam

hydrogen

bromine[3]

- (d) Alkenes can polymerise.
 - (i) Deduce the name and structural formula of the monomer from the structure of the polymer.

$$\begin{array}{c|cccc}
 & H & H \\
 & | & | \\
 & C & C \\
 & | & | \\
 & CH_3 & H \\
\end{array}$$

name of monomer

structural formula

(ii) Draw the structure of the polymer formed from the following monomer.

(iii)	Describe the pollution problems caused by the disposal of polymers in landfill sites and by burning.
	landfill sites
	[2]
	burning
	[1]
	[1]

Гwо	homologous series of hydrocarbons are the alkanes and the alkenes.
(æ)) a	One general characteristic of a homologous series is that the physical properties vary in predictable way.
	State three other general characteristics of a homologous series.
	[3]
	(ii) How can the molecular formula of a hydrocarbon show whether it is an alkane or an alkene?
	[2]
	(iii) How do alkanes and alkenes differ in their molecular structures?
	[2]

3

(b)	b) Cracking is the thermal decomposition of alkanes into smaller hydrocarbons and possibly hydrogen.					
	(i)	State two conditions required for the cracking of an alkane.				
			[2			
	(ii)	One type of cracking produces an alkane and an alkene.				
		Complete an equation for the cracking of heptane into an alkane and an alkene.				
		C 7H ₁₆ → +	[1]			
(iii)	Complete an equation for the cracking of heptane into hydrogen and two other pro	ducts.			
		C ₇ H ₁₆ → + + H ₂	[1]			
(iv)	Suggest one reason why cracking is important.				
			[1			

(c)	c) Hydrocarbons burn in excess oxygen to form carbon dioxide and water. 20cm ³ of a gaseous hy excess of oxygen, 200cm ³ . After cooling, the volume of the residual gas at r.t.p. was 150cm ³ , 500						
	excess of oxygen, 200cm ³ . After cooling, the volume of the residual gas at r.t.p. was 150cm ³ , 50cm oxygen.						
	(i)	Determine the volume of the oxygen used.					
		[1]					
	(ii)	Determine the volume of the carbon dioxide formed.					
		[1]					
	(iii)	The hydrocarbon was an alkane.					
		Determine the formula of the hydrocarbon.					
		[1]					
		[Total: 15]					

4	Alcohol	s can be made by fermentation or from petroleum.
	(a) Eth	anol can be made by the fermentation of glucose.
		$C_6H_{12}O_6(aq) \xrightarrow{yeast} 2C_2H_5OH(aq) + 2CO_2(g)$ exothermic reaction
		ast are living single-cell fungi which ferment glucose by anaerobic respiration. This ction is catalysed by enzymes from the yeast.
	(i)	What is meant by the term respiration?
		[3]
	(ii)	Anaerobic means in the absence of oxygen.
		Name the products formed from respiration in the presence of oxygen.
		[1]
	(iii)	What are enzymes?
		[1]
	(iv)	Suggest a method of measuring the rate of this reaction.
		[1]
	(b) The	e following observations were noted.
	•	When a small amount of yeast was added to the aqueous glucose the reaction started
	•	and the solution went slightly cloudy. The reaction rate increased and the solution became cloudier and warmer.
	•	After a while, the reaction rate decreased and eventually stopped, leaving a 14% solution of ethanol in water.
	(i)	Why did the reaction rate increase?
	(ii)	Suggest an explanation for the increase in cloudiness of the solution.

(iii) Give two reasons why the fermentation stopped.

PhysicsAndMathsTutor.com

[2]

(c)	One use of ethanol is in alcoholic drinks.
	Give two other uses of ethanol.
	[2]
(d)	Alcohols can be made from petroleum by the following sequence of reactions.
	alkanes from petroleum \rightarrow alkene \rightarrow alcohol
	Describe the manufacture of ethanol from hexane, C_6H_{14} . Include in your description an equation and type of reaction for each step.
	[5]
	[Total: 17]